Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Opt Express ; 32(6): 9343-9361, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571171

RESUMEN

Many chlorophyll-a (Chl-a) remote sensing estimation algorithms have been developed for inland water, and they are proposed always based on some ideal assumptions, which are difficult to meet in complex inland waters. Based on MIE scattering theory, this study calculated the optical properties of mineral particles under different size distribution and refractive index conditions, and the Hydrolight software was employed to simulate remote sensing reflectance in the presence of different mineral particles. The findings indicated that the reflectance is significantly influenced by the slope (j) of particle size distribution function and the imaginary part (n') of the refractive index, with the real part (n) having a comparatively minor impact. Through both a simulated dataset containing 18,000 entries and an in situ measured dataset encompassing 2183 data from hundreds of lakes worldwide, the sensitivities of band ratio (BR), fluorescence baseline height (FLH), and three-band algorithms (TBA) to mineral particles were explored. It can be found that BR showed the best tolerance to mineral particles, followed by TBA. However, when the ISM concentration is less than 30 g m-3, the influence of CDOM cannot be ignored. Additionally, a dataset of over 400 entries is necessary for developing the BR algorithm to mitigate the incidental errors arising from differences in data magnitude. And if the amount of developing datasets is less than 400 but greater than 200, the TBA algorithm is more likely to obtain more stable accuracy.

2.
Foods ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38672849

RESUMEN

Gallic acid-Antarctic krill peptides (GA-AKP) nanocapsules (GA-AKP-Ns) were prepared using a dual delivery system with complex emulsion as the technical method, a high-pressure microjet as the technical means, polylactic acid-hydroxyacetic acid (PLGA) as the drug delivery vehicle, and GA-AKP as the raw material for delivery. This study aimed to investigate the effects of microjet treatment and the concentration of PLGA on the physicochemical properties and stability of the emulsion. Under optimal conditions, the physicochemical properties and hypoglycemic function of nano-microcapsules prepared after lyophilization by the solvent evaporation method were analyzed. Through the microjet treatment, the particle size of the emulsion was reduced, the stability of the emulsion was improved, and the encapsulation rate of GA-AKP was increased. The PLGA at low concentrations decreased the particle size of the emulsion, while PLGA at high concentrations enhanced the encapsulation efficiency of the emulsion. Additionally, favorable results were obtained for emulsion preparation through high-pressure microjet treatment. After three treatment cycles with a PLGA concentration of 20 mg/mL and a microjet pressure of 150 MPa (manometric pressure), the emulsion displayed the smallest particle size (285.1 ± 3.0 nm), the highest encapsulation rates of GA (71.5%) and AKP (85.2%), and optimal physical stability. GA-AKP was uniformly embedded in capsules, which can be slowly released in in vitro environments, and effectively inhibited α-amylase, α-glucosidase, and DPP-IV at different storage temperatures. This study demonstrated that PLGA as a carrier combined with microjet technology can produce excellent microcapsules, especially nano-microcapsules, and these microcapsules effectively improve the bioavailability and effectiveness of bioactive ingredients.

3.
Carbohydr Polym ; 334: 122038, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553205

RESUMEN

The widespread use of disposable plastic straws has caused a long-lasting environmental problem. Potential alternatives for plastic straws are far from satisfactory due to the low utility, poor water stability, and non-ideal natural degradability. In this work, an edible, hydrostable, and degradable straw was developed from the economically significant seaweed. Seaweed-derived insoluble cellulose fibers were used as the building block of the straw, and the soluble polysaccharide extracts were explored as the natural glue through the chelation with Ca2+. Repeated freeze-thawing was introduced to strengthen the molecular interactions, which further improved its mechanical stability and hydrostability. The straw exhibited remarkable natural degradability in open environments, particularly in marine-mimicking conditions. By incorporating pH-sensitive food pigments, the straws could indicate acid-base property of a beverage or even discriminate the freshness of milk. The versatile seaweed-derived straw adhered to the biocycle concept of "from sea to sea" to alleviate the burden of white pollution on oceans.


Asunto(s)
Celulosa , Algas Marinas , Polisacáridos
4.
Foods ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254592

RESUMEN

The search for alternative salt formulations similar to sodium chloride and their effect on marinated meat products is of great significance to the low-sodium meat processing industry. The main purpose of this study was to investigate the effect of partially replacing sodium chloride with potassium lactate, calcium ascorbate, and magnesium chloride on the sodium content, water activity and distribution, protein solubility, microstructure, sensory characteristics and volatile flavor compounds in low-sodium marinated beef. The sodium content in the test group decreased up to 28% compared to 100% in the sodium chloride group C1. The formulation including 60% sodium chloride and a total of 40% compound alternative salts in groups F1 and F2 increased their myofibril fragmentation index and promoted the disruption of the myogenic fiber structure. Group F1 (the ratio of potassium lactate, calcium ascorbate and magnesium chloride was 2:1:1) performed higher solubility of myofibrillar proteins and lower transverse relaxation value than group F2 detected by low-field nuclear magnetic resonance, which indicated that F1 formulation was beneficial to promote the solubility of myofibrillar proteins and attenuate the water mobility of marinated beef. Moreover, group F1 had a more similar microstructure and more similar overall sensory attributes to group C1 according to the scanning electron microscopy. The sensory evaluation showed higher peak intensity and response values of volatile flavor compounds than group C1 and C2 (only 60% sodium chloride) when detected using gas chromatography-ion mobility spectrometry technology, which indicated that the compound alternative salts of group F1 can improve the lower quality of low-sodium marinated beef and perform similar attributes to the C1 sample regarding moisture distribution and microstructure and even performs better than it with regards to flavor. Therefore, the F1 formula possessed greater potential for application in low-sodium marinated meat products.

5.
Ultrason Sonochem ; 102: 106755, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38219547

RESUMEN

Milk fat globules or milk fat globule membranes (MFGs/MFGM) have been added to the infant formula to fortify the phospholipids and narrow the nutritional gap from breast milk. The main aim of this study was to profile the interfacial and thermal properties of MFGs/MFGM prepared from ultrasonicated bovine milk. Bovine milk was sonicated at ultrasonic intensities of 20 kHz and 40 kHz independently or synchronously with the duration time of 0 min (control), 5 min, 10 min, and 15 min (work/rest cycles = 5 s: 3 s). Ultrasonic treatments at 20 kHz/ 5 min and 20 + 40 kHz/ 5 min improved the volume density (%) of smaller particles (1-10 µm) while significantly decreasing the surface hydrophobicity (H0) (p < 0.05). 40 kHz/5 min samples showed significantly higher ζ- potential than the other samples (p < 0.05), which might be because more negative charges were detected. In comparison with control samples, ultrasonic treatments decreased the interfacial tension (π) between the air and MFGs/MFGM liquid phase. 20 kHz ultra-sonicated treatments decreased the diffusion rate (k diff) of MFGs/MFGM interfacial compositions significantly as the duration prolonged from 5 min to 15 min (p < 0.05) but did not affect the adsorption or penetration rate (k a) (p > 0.05). X-ray diffraction (XRD) results showed that α-crystal peaks only existed in control and ultrasonicated 5 min samples but disappeared in all 15 min samples. According to the different scanning calorimetry (DSC), one or two new exothermic events (in the range of 17.29 - 18.81 â„ƒ and 22.14 - 25.21 â„ƒ) appeared after ultrasonic treatments, which, however, were not found in control samples. Ultrasonic treatments resulted in the low-melting fractions (LMF) (TM1) peaks undetectable in MFGs/MFGM samples in which only peaks of medium-melting fractions (MMF) (TM2) and high-melting fractions (HMF) (TM3) were detected. Compared with the control, both enthalpies of crystallisation (ΔHC) and melting (ΔHM) decreased in ultrasonicated samples. In conclusion, ultrasonic treatment affects the interfacial and thermal properties of MFGs/MFGM.


Asunto(s)
Glicoproteínas , Leche , Humanos , Lactante , Femenino , Animales , Leche/química , Glucolípidos , Gotas Lipídicas
6.
Int J Biol Macromol ; 257(Pt 1): 128562, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056154

RESUMEN

In this study, xanthan gum (XG), sodium alginate (SA), guar gum (GG), and gum Arabic (GA), were used to modify Lotus root starch (LRS). The incorporation XG, SA, and GG significantly (p < 0.05) influence the swelling power (SP) of LRS, among which the 1.5 % of XG exhibited the highest value of 25.84 g/g at 90 °C. Gelatinization analysis revealed that XG raised the final viscosity (FV) and lowered the breakdown (BD), while SA significantly increased peak viscosity (PV) and BD. Furthermore, GG and GA exhibited a substantial reduction in setback (SB). The incorporation of XG, SA, and GG enhanced the rheological and structural properties (e.g., gel strength and elasticity) of LRS. Particularly, XG demonstrated a more prominent effect, while GA exhibited an opposite trend. Moreover, the structural analyses revealed that hydrophilic colloids have no impact on the functional group and crystal structure of the LRS. However, complex system exhibited the more stable hydrogen bonding. The addition of 1.5 % XG exhibited the most stable hydrogen bonding and highest water binding affinity. Overall, the results demonstrated the effect of different hydrophilic colloids on LRS, offering a theoretical basis for LRS applications and novel insights for the use of starches and hydrocolloids.


Asunto(s)
Coloides , Almidón , Almidón/química , Coloides/química , Geles/química , Polisacáridos Bacterianos/química , Goma Arábiga/química , Viscosidad , Reología
7.
Colloids Surf B Biointerfaces ; 234: 113709, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159329

RESUMEN

A non-destructive technique known as multi-scale ultrasound (MSU) was employed to modify the emulsion consisting of glycosylated bovine whey protein (WP) and pullulan (Pu). To assess the effect on the structural and emulsifying properties of the WP-Pu, the formulated emulsion, was treated with divergent MSU at (single: 20 kHz, 40 kHz, and 60 kHz; dual: 20-40 kHz, 40-60 kHz, and 20-60 kHz; and tri: 20-40-60 kHz) frequency for a duration of 30 min. The tri-frequency, treated emulsion showed improved emulsifying stability compared to the control and MSU-treated single, and dual-frequency samples, as indicated by the particle size, structural morphology, and adsorbed protein. The molecular docking and numerous spectral analysis provided evidence that WP can undergo successful phenolation. This modified form of WP then interacts with Pu through various forces, including H-bonding and other mechanisms, resulting in the formation of a composite emulsion. The rheological properties revealed that both the control emulsion and the MSU-treated emulsion exhibited non-Newtonian pseudoplastic flow behavior. This behavior is characterized by shear thinning, where the viscosity decreases with increasing shear rate. The shear rates tested ranged from 1 to 300 1/s, additionally, the degree of crystallinity increased from 18.2° to 19.4°. Overall, the tri-frequency effect was most pronounced compared to single and dual-frequency. Ultrasonication, an emerging non-thermal technology, proves to be an efficient approach for the formulation of WP-Pu composites. These composites have significant potential for use in drug delivery systems and functional foods.


Asunto(s)
Glucanos , Polisacáridos , Animales , Bovinos , Proteína de Suero de Leche/química , Emulsiones/química , Simulación del Acoplamiento Molecular
8.
Food Res Int ; 174(Pt 1): 113558, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986436

RESUMEN

Micellar casein (MC) has a unique gastric colloidal behavior in response to Ca2+ cross-linking, and its aggregation properties are closely related to pepsin and gastric acid. In this study, MC with different levels of colloidal calcium phosphate (CCP) was obtained by high hydrostatic pressure (HHP) at different pressures, followed by spray drying to obtain the powders. Different amounts of calcium chloride (exogenous Ca2+) were added to MC powders prior to in vitro simulated digestion to investigate the effect of exogenous serum Ca2+ levels on the aggregation behavior and the structure change of curds generated in gastric tract. The results revealed that HHP induced the emergence of more Ca2+-binding sites, thus Ca2+ was more likely to bind to MC matrix with low CCP levels. Meanwhile, high serum Ca2+ level provided more opportunities to form aggregates. The Highest pressure (500 MPa) with the highest Ca2+ level (5 mM) caused the lowest solubility aggregates, which were only 30% at the end of gastric digestion (120 min), half of the control sample (0 MPa with 0.15 mM Ca2+). The results of wide-angle X-ray scattering / small-angle X-ray scattering suggested that both pepsin and gastric acid-induced aggregation via Ca2+ as a bridge. For pepsin, Ca2+ cross-linked between para-κ-casein; For gastric acid, Ca2+ recombined phosphorylation sites and caused cross-linking of casein subunits.


Asunto(s)
Caseínas , Micelas , Caseínas/química , Presión Hidrostática , Polvos , Pepsina A , Concentración de Iones de Hidrógeno
9.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933819

RESUMEN

Reducing salt in food without compromising its quality is a huge challenge. Some review articles have been recently published on saltiness perception in some colloidal systems such as emulsions. However, no published reviews are available on saltiness perceptions of gel-based matrices, even though salt release and perception in these systems have been extensively studied. This article reviews the recent advances in salt perception in gel-based systems and provides a detailed analysis of the main factors affecting salt release. Strategies to enhance saltiness perception in gels and emulsion-filled gels are also reviewed. Saltiness perception can be improved through addition of biopolymers (proteins and polysaccharides) due to their ability to modulate texture and/or to adhere to or penetrate through the mucosal membrane on the tongue to prolong sodium retention. The composition of the product and the distribution of salt within the matrix are the two main factors affecting the perception of salty taste. Food structure re-design can lead to control the level of interaction between the salt and other components and change the structure, which in turn affects the mobility and release of the salt. The change of ingredients/matrix can affect the texture of the product, highlighting the importance of sensory evaluation.

10.
Foods ; 12(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37893649

RESUMEN

In this study, the effects of Lentilactobacillus buchneri (L. buchneri: CCTCC M 2023228) and Kazachstania bulderi (K. bulderi: CCTCC M 2023227) on the quality characteristics and volatile flavor substances in fermented red sour soup were explored based on natural fermentation. Compared to natural fermentation (nitrite: 5.5 mg/kg; amino acid nitrogen: 0.17 g/100 g; lycopene: 63.73 µg/mL), three fortified fermentation methods using L. buchneri, K. bulderi, and both strains together significantly reduced the concentrations of nitrite (2.62, 2.49, and 2.37 mg/kg), amino acid nitrogen (0.03 g/100 g, 0.02 g/100 g, and 0.05 g/100 g), and lycopene (26.64, 32.45, and 51.89 µg/mL). Total acid content (11.53 g/kg) and lactic acid bacteria count (285.9 ± 1.65 × 106 CFU/mL) were the elements most significantly increased by fortified fermentation with L. buchneri relative to other fermentation methods. A total of 99 volatile compounds were determined in red sour soup and could be roughly classified into alcohols, aldehydes, ketones, and esters. Fortified fermentation with two strains and fortified fermentation with K. bulderi increased the content of methyl butanoate and 3-hydroxybutan-2-one-acetoin (D). This study confirmed the effects of L. buchneri and K. bulderi on the quality and flavor of fermented red sour soup and provided a theoretical basis for the fortified fermentation of red sour soup.

11.
Front Nutr ; 10: 1203932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545586

RESUMEN

The dietary intervention has demonstrated effectiveness in improving hyperlipidemia and obesity. Woody edible oils are rich in unsaturated fatty acids (UFAs) that could positively affect lipid metabolism. In this study, the blended oil (BLO), a balanced UFA supplement, constituted by Zanthoxylum bungeanum (Chinese Red Pepper) seed oil, walnut (Juglans regia) oil, camellia (Camema oleifera) seed oil and perilla (Perilla frutescens) seed oil was established referring to the Chinese dietary reference intakes, in which the ratios of monounsaturated/polyunsaturated fatty acids and ω-6/ω-3 polyunsaturated fatty acids were 1:1 and 4:1, respectively. The BLO was administrated to KM mice fed a high-fat diet (HFD) by gavage every day at a dose of 3.0 mL/kg·bw for 10 weeks to assess its effects on serum lipid levels, liver antioxidant activities and gut microbial composition. The results showed that the BLO improved hepatic steatosis, liver oxidative stress, and serum lipid levels. Additionally, there was an increased abundance of Lactobacillus, Allobaculum, and Blautia, along with a decreased abundance of Staphylococcus in cecal contents. These changes were found to be positively correlated with the metabolic improvements, as indicated by Spearman's correlation analysis. These findings implied the practicality of the balanced unsaturated fatty acid consumption in preventing hyperlipidemia and obesity.

12.
J Colloid Interface Sci ; 648: 511-519, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37307607

RESUMEN

In this study, we present a bimetallic ion coexistence encapsulation strategy employing hexadecyl trimethyl ammonium bromide (CTAB) as a mediator to anchor cobalt-nickel (CoNi) bimetals in nitrogen-doped porous carbon cubic nanoboxes (CoNi@NC). The fully encapsulated and uniformly dispersed CoNi nanoparticles with the improved density of active sites help to accelerate the oxygen reduction reaction (ORR) kinetics and provide an efficient charge/mass transport environment. Zinc-air battery (ZAB) equipped CoNi@NC as cathode exhibits an open-circuit voltage of 1.45 V, a specific capacity of 870.0 mAh g-1, and a power density of 168.8 mW cm-2. Moreover, the two CoNi@NC-based ZABs in series display a stable discharge specific capacity of 783.0 mAh g-1, as well as a large peak power density of 387.9 mW cm-2. This work provides an effective way to tune the dispersion of nanoparticles to boost active sites in nitrogen-doped carbon structure, and enhance the ORR activity of bimetallic catalysts.

13.
Food Chem X ; 18: 100669, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37168721

RESUMEN

The effects of different storage temperatures on the nutritional quality, color, and antioxidant capacity of lotus seed juice and the correlations between various physicochemical indices and antioxidant capacity during storage were investigated in this study. The results showed that the overall retention rate of various nutrients and antioxidant activity in lotus seed juice under low-temperature storage was better than that under 37 °C storage. Meanwhile, temperature had a significant effect on increasing the browning of lotus seed juice and the change in L*. The results of Pearson correlation and redundancy analysis (RDA) showed that the reduction in antioxidant activity in lotus seed juice aggravated the browning index of the system at high temperatures. The color changes in the system were closely related to the clarity of lotus seed juice and aging of starch at low temperatures.

14.
Polymers (Basel) ; 15(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37050384

RESUMEN

The chemical composition, macromolecular characteristics, and structure of four types of Tremella fuciform polysaccharides (TPS) were analyzed, including one TPS that was extracted in the laboratory (L-TPS) and three commercial TPS. The effects of pH on the properties of TPS emulsions were investigated by analyzing their zeta potential, particle size, apparent viscosity, and stability. The results showed that L-TPS presented a higher percentage content of protein (2.33%) than commercial TPS (0.73-0.87%), and a lower molecular mass (17.54 × 106 g/mol). Thus, L-TPS exhibited the best emulsifying activity but gave poor emulsion stability. The droplet sizes and apparent viscosity of commercial TPS-stabilized emulsions were larger or higher in acidic environments. At pH 2, the apparent viscosity was the lowest for L-TPS. Commercial TPS emulsions were most stable at pH 6, while the L-TPS-stabilized emulsion was most stable at pH 2. The obtained results revealed that the emulsifying properties of TPS varied and the effects of pH on emulsion characteristics differed, as determined from the molecular mass, macromolecular characteristics, and structure. This research is useful for expanding the application of TPS as a novel food ingredient in emulsions.

15.
Food Chem X ; 18: 100650, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36968314

RESUMEN

The crystallization of lactose usually causes the structural collapse and core material escape of flavor encapsulations. The objective of this study was to investigate the effects of different grafting degrees of WPI-inulin Maillard reaction products on the lactose crystallization and the subsequent release behaviors. Ethyl acetate was chosen as the model volatile flavor and the encapsulations were prepared by freeze-drying. The results found that the encapsulation efficiency was significantly increased from 30% to over 80% by using MRPs as wall materials. Those microparticles showed the greater flavor retention and lower moisture adsorption. In addition, the encapsulations produced by the proper Maillard reaction times (e.g., 48 h and 72 h) could effectively delay the lactose crystallization and thus improve the structural stability of the matrix. This innovation finding aims to use the Maillard reaction to control the crystallization behaviors and enhance the usefulness of high-lactose containing products in encapsulation systems.

16.
Foods ; 12(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36832971

RESUMEN

Being a natural active substance with a wide variety of sources, easy access, significant curative effect, and high safety, active peptides have gradually become one of the new research directions in food, medicine, agriculture, and other fields in recent years. The technology associated with active peptides is constantly evolving. There are obvious difficulties in the preservation, delivery, and slow release of exposed peptides. Microencapsulation technology can effectively solve these difficulties and improve the utilization rate of active peptides. In this paper, the commonly used materials for embedding active peptides (natural polymer materials, modified polymer materials, and synthetic polymer materials) and embedding technologies are reviewed, with emphasis on four new technologies (microfluidics, microjets, layer-by-layer self-assembly, and yeast cells). Compared with natural materials, modified materials and synthetic polymer materials show higher embedding rates and mechanical strength. The new technology improves the preparation efficiency and embedding rate of microencapsulated peptides and makes the microencapsulated particle size tend to be controllable. In addition, the current application of peptide microcapsules in different fields was also introduced. Selecting active peptides with different functions, using appropriate materials and efficient preparation technology to achieve targeted delivery and slow release of active peptides in the application system, will become the focus of future research.

17.
Foods ; 12(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36673460

RESUMEN

Plant proteins are constantly gaining attention as potential substitutes for dairy proteins, due to their suitable functionality and nutritional value. This study was designed to compare the structural and functional responses of different plant protein isolates (soy, pea, lentil, and chickpea) with two commonly used dairy protein (whey protein isolates and sodium caseinate) under different pH treatments (pH 3.0, 5.0, 7.0, and 9.0). The results showed that pH had a different alteration on the structural, surface properties and functional properties of plant and dairy proteins. Plant protein generally possessed a darker color, lower solubility, emulsifying properties, and foaming capacity, whereas their foaming stability and water holding capacity were higher than those of dairy proteins. Soy protein isolates were characterized by its comparable proportion of ß-turn and random coils, zeta-potential, emulsifying (30.37 m2/g), and water-holding capacity (9.03 g/g) at alkaline conditions and chickpea protein isolates showed good oil-holding capacity (3.33 g/g at pH 9) among plant proteins. Further analysis confirmed that pH had a greater influence on the structural and functional properties of proteins as compared to protein sources, particularly at acidic conditions. Overall, this study might help processors select the appropriate plant protein as dairy alternatives for their target application in plant-based food products.

18.
Foods ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36553849

RESUMEN

Milk fat globules (MFGs) have tri-layer biological membrane structures, and their compositions are gaining more interest for their physiological benefits. In this study, the changes in MFGs and milk fat globule membrane (MFGM) proteins after cream separation from different pH bovine raw milk were investigated. Raw milk samples were adjusted to pH 5.30 and 6.30 using citric acid at 25 °C. The effect of pH and centrifugation on the structure of MFGs was evaluated by means of particle size, zeta potential and confocal laser scanning microscopy (CLSM). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to analyze the proteins in the obtained fractions. It was found that both pH and centrifugation could affect the particle size of all samples. As the volume distribution (Dv; Dv (10), Dv(50)and Dv (90)) decreased, the corresponding specific surface area (SSA) increased, and span and uniformity values showed the same trend. The decrease in the zeta potential of MFG correlated with the Dv(50), which was further confirmed by CLSM observation. More butyrophilin (BTN) and periodic acid Schiff 6/7 (PAS 6/7) were lost in cream samples at pH 5.30. The findings could provide valuable knowledge for the application of MFGs ingredient in the food industry since their structures and compositions could affect their potential functional and physiological properties.

19.
J Dairy Sci ; 105(11): 8750-8764, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36153160

RESUMEN

Particle breakage of dairy powders occurs easily during many processes, reducing the powder functionality. The characteristics of particles and the applied stress from processing conditions on the particles are 2 main factors that can be manipulated to reduce breakage. In this study, we explored the effect of whey protein and lactose contents on dynamic breakage in agglomerated whey protein-lactose powders to provide useful information, in terms of particle characteristics, for controlling unwanted dairy powder breakage. A series of model agglomerates with different whey protein:lactose ratios were produced under the same spray-drying conditions, through a pilot plant trial. We evaluated physical characteristics, composition, and structure of samples; analyzed dynamic breakage under different mechanical stresses; and investigated the rehydration and water adsorption properties of model powders before and after breakage. The particle size and irregularity of agglomerates with more lactose was significantly higher than of samples that contained more protein. This resulted in higher particle breakage during dynamic breakage for samples with more lactose. The breakage of agglomerates was affected by the moisture content of powders and fatigue, where particle breakage happens when mechanical loads, lower than the strength of particles, occur multiple times. Breakage changed the morphology and surface composition of particles and decreased particle size. It also decreased the dispersibility of powders and increased the wetting time of wettable samples but decreased the wetting time of powders with poor wettability. Breakage accelerated time-dependent crystallization and decreased the crystallization temperature but did not affect the glass transition temperature of samples. Thus, under the same drying conditions, composition of powders significantly affected breakage, mainly by altering the physical properties of their particles, which resulted in deteriorated functionality.


Asunto(s)
Lactosa , Agua , Animales , Lactosa/química , Polvos/química , Proteína de Suero de Leche , Tamaño de la Partícula
20.
Foods ; 11(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010417

RESUMEN

In this study, we employed the ultrasound-prepared electrostatic complex and covalent conjugate of soy protein isolate (SPI) and citrus pectin (CP) to prepare ß-carotene-loaded nanoemulsions. The in vitro digestion and storage stability of nanoemulsions stabilized by different types of emulsifiers were investigated and compared. Nanoemulsions stabilized by ultrasound-treated complex/conjugate showed the highest encapsulation efficiency; during gastric digestion, these nanoemulsions also demonstrated the smallest droplet sizes and the highest absolute values of zeta potential, indicating that both electrostatic complexation/covalent conjugation and ultrasound treatment could significantly improve the stability of the resulting nanoemulsions. In comparison, complexes were more beneficial for the controlled release of ß-carotene; however, the conjugate-stabilized nanoemulsion showed an overall higher bioaccessibility. The results were also confirmed by optical micrographs. Furthermore, nanoemulsions stabilized by ultrasound-prepared complexes/conjugates exhibited the highest stability during 14-day storage at 25 °C. The results suggested that ultrasound-prepared SPI-CP complexes and conjugates had great application potential for the delivery of hydrophobic nutrients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...